股票资本分配
【新智元导读】2024年的AI编程到底什么实力?近日,谷歌的工程主管Addy Osmani,为我们揭示了AI辅助编码在一线开发中的真实情况。
2024年,AI编程已然渗透了各行各业,影响着软件的整个生命周期。
那么问题来了,AI coding用过都说好,但我们平时用的软件咋感觉没啥进步呢?
近日,Addy Osmani,谷歌的工程主管,同时也是一位亚马逊畅销书作家,为我们揭示了AI辅助编码在一线开发中的真实情况。
码农怎么用AI?
一般来说,团队利用AI进行开发有两种不同的模式:「引导程序(bootstrappers)」 和 「迭代器(iterators)」。两者都在帮助工程师(甚至是非技术用户)缩小从想法到执行的差距。
Bootstrappers
这一类包括Bolt, v0, 和screenshot-to-code等AI工具,其特点为:
从设计或粗略概念开始;
使用AI生成完整的初始代码库;
能够在几小时或几天内获得工作原型;
专注于快速验证和迭代
这样的工作流令人印象深刻。比如一位独立开发人员可以使用Bolt,在短时间内将Figma设计转变为有效的Web应用程序。尽管达不到生产级别的要求,但用来获得初步的用户反馈绰绰有余。
Iterators
这一类主要负责日常开发工作流程,包括Cursor、Cline、Copilot和WindSurf等工具,效果没有上面那么浮夸,但更加实在,比如:
完成代码、提供建议;
执行复杂的重构任务;
生成测试和文档;
作为解决问题的「结对程序员」
虽然这两种方法都可以大大加快开发速度,但「天下没有免费的午餐」。
「AI速度」的隐性成本
高级工程师使用Cursor或Copilot等AI工具,可以在几分钟内搭建整个功能的基架,并完成测试和文档,就像变魔术一样。
但仔细观察就会发现,在参考AI建议的同时,资深工程师们还会:
将生成的代码重构为更小的模块;
添加边缘情况处理;
优化类型定义和接口;
添加全面的错误处理;
甚至是质疑AI给出的架构
换句话说,他们正在用多年积累的工程智慧,塑造和限制AI的输出。AI负责加速代码实现,但人类的专业知识确保代码的可维护性。
而初级工程师就经常错过这些关键步骤。他们更容易接受AI的输出,从而导致所谓的「纸牌屋代码(house of cards code)」——看起来很完整,但在现实世界的压力下会崩溃。
知识悖论
所以实际上,相比于初学者,AI反而更能帮助有经验的开发人员,——这多少有点反直觉。
高级工程师利用AI快速构建想法的原型(理解)、生成基本实现(可改进)、探索已知问题的替代方法等等;
而初学者却经常接受不正确或过时的解决方案、忽略关键的安全性和性能问题、不知道如何调试AI生成的代码,最终构建了一个自己不完全理解的脆弱系统。
70% problem
使用AI进行编码的非工程师,经常遇到一个窘境: 他们可以出人意料地迅速完成70%的工作,但最后的30%就相当痛苦了。
「70% problem」揭示了AI辅助开发的现状,刚开始如有神助,后来被现实按在地上摩擦。
实际情况通常是:
尝试修复一个小错误——>
AI提出了一个似乎合理的更改——>
这个更改破坏了其他一些东西——>
要求AI修复新问题——>
又产生了两个新bug——>
无限循环
这个循环对于非工程师来说尤其痛苦,因为他们缺乏专业知识来理解真正出了什么问题。
有经验的开发人员遇到bug时,可以根据多年的模式识别来推理潜在原因和解决方案。如果没有这个背景,那基本上就是在用自己不完全理解的代码「打地鼠」。
学习悖论
还有一个更深层次的问题:让非工程师使用AI编码工具,实际上可能会阻碍学习。
代码生成了、运行了,但「开发者」不了解基本原理,此时,他错过了学习基本模式、没有培养调试技能、无法对架构决策进行推理,而这份代码又需要维护和扩展。
于是,「开发者」不断返回AI来解决问题,而没有培养自己处理问题的专业能力。
非工程师使用AI编码工具的最好方式可能是「混合模式」:
1. 使用AI进行快速原型设计
2. 花点时间了解生成的代码是如何工作的
3. 学习基本的编程概念以及AI使用
4. 逐步建立知识基础
5. 将AI用作学习工具,而不仅仅是代码生成器
但这需要耐心和奉献精神,与许多人使用AI工具的目标恰恰相反。
「70% problem」表明,当前的AI还不是许多人希望的那个AI。最后30%的工作(使软件可用于生产、可维护等),仍然需要真正的工程知识。
最佳实践
Addy Osmani观察了几十个团队,总结了一些最佳实践方式:
「AI初稿」模式
让 AI 生成基本实现;手动审查和模块化重构;添加全面的错误处理;编写全面的测试;记录关键决策。
「持续对话」模式
为每个不同的任务开始新的AI聊天;保持上下文集中和最小;经常查看和提交更改;保持紧密的反馈循环。
「信任但验证」模式
使用AI生成初始代码;手动审查所有关键路径;边缘案例的自动测试;定期安全审计。
AI的真正前景?
尽管存在这些挑战,但作者对AI在软件开发中的作用持乐观态度。关键是要充分利用AI的真正优势:
加速已知AI擅长帮助实现我们已经了解的模式,就像有一个无限耐心的结对程序员,他可以非常快速地打字。
探索可能性AI非常适合快速构建想法原型和探索不同的方法,就像一个沙箱,我们可以在其中快速测试概念。
所谓网络靶场,是数字化建设过程中安全性测试的重要基础设施,是检验和评估安全防御体系有效性的重要技术系统,是国家对重大网络安全风险和趋势进行推演和论证研判的重要科学装置,是防范化解重大网络安全风险的重要手段。
自动化例程AI大大减少了花在样板和日常编码任务上的时间,让我们可以专注于有趣的问题。
如果您刚刚开始AI辅助开发,作者的建议是,先从小处着手。
将AI用于非耦合的、定义明确的任务,查看生成的每一行代码,逐渐构建更大的功能。
过程中保持模块化:将所有内容分解为小的重点文件,在组件之间保持清晰的接口,记录模块的边界。
重要的一点是,相信自己的经验:AI用来加速而不能取代你的判断、感觉不对劲时要质疑、时刻维护自己的工程标准。
Agent兴起
随着我们进入2025年,AI辅助开发的格局正在发生巨大变化。虽然当前的工具已经改变了原型设计和迭代方式,但我们正处于更重要转型的风口浪尖:智能体(Agent)软件工程的兴起。
智能体系统不仅可以响应提示,还将以越来越高的自主性规划、执行和迭代解决方案。
比如Anthropic的Claude能够使用计算机,或者Cline自动启动浏览器和运行测试的能力。
在调试过程中,智能体系统不仅给出修复bug的建议,还可以:
主动识别潜在问题、启动和运行测试套件、检查UI元素并捕获屏幕截图、提出并实施修复、验证解决方案是否有效。
下一代工具将可以无缝集成视觉理解(UI 屏幕截图、模型、图表)、口头语言对话和环境交互(浏览器、终端、API)。
未来的AI不是取代开发人员,而是成为一个越来越有能力的协作者,既可以采取主动,又能尊重人类的指导和专业知识。